Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Digit Health ; 9: 20552076231178418, 2023.
Article in English | MEDLINE | ID: covidwho-20243438

ABSTRACT

Containment measures in high-risk closed settings, like migrant worker (MW) dormitories, are critical for mitigating emerging infectious disease outbreaks and protecting potentially vulnerable populations in outbreaks such as coronavirus disease 2019 (COVID-19). The direct impact of social distancing measures can be assessed through wearable contact tracing devices. Here, we developed an individual-based model using data collected through a Bluetooth wearable device that collected 33.6M and 52.8M contact events in two dormitories in Singapore, one apartment style and the other a barrack style, to assess the impact of measures to reduce the social contact of cases and their contacts. The simulation of highly detailed contact networks accounts for different infrastructural levels, including room, floor, block, and dormitory, and intensity in terms of being regular or transient. Via a branching process model, we then simulated outbreaks that matched the prevalence during the COVID-19 outbreak in the two dormitories and explored alternative scenarios for control. We found that strict isolation of all cases and quarantine of all contacts would lead to very low prevalence but that quarantining only regular contacts would lead to only marginally higher prevalence but substantially fewer total man-hours lost in quarantine. Reducing the density of contacts by 30% through the construction of additional dormitories was modelled to reduce the prevalence by 14 and 9% under smaller and larger outbreaks, respectively. Wearable contact tracing devices may be used not just for contact tracing efforts but also to inform alternative containment measures in high-risk closed settings.

3.
Lancet Reg Health West Pac ; 1: 100004, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-2257168

ABSTRACT

BACKGROUND: With at least 94 countries undergoing or exiting lockdowns for contact suppression to control the COVID-19 outbreak, sustainable and public health-driven exit strategies are required. Here we explore the impact of lockdown and exit strategies in Singapore for immediate planning. METHODS: We use an agent-based model to examine the impacts of epidemic control over 480 days. A limited control baseline of case isolation and household member quarantining is used. We measure the impact of lockdown duration and start date on final infection attack sizes. We then apply a 3-month gradual exit strategy, immediately re-opening schools and easing workplace distancing measures, and compare this to long-term social distancing measures. FINDINGS: At baseline, we estimated 815 400 total infections (21.6% of the population). Early lockdown at 5 weeks with no exit strategy averted 18 500 (2.27% of baseline averted), 21 300 (2.61%) and 22 400 (2.75%) infections for 6, 8 and 9-week lockdown durations. Using the exit strategy averted a corresponding 114 700, 121 700 and 126 000 total cases, representing 12.07-13.06% of the total epidemic size under baseline. This diminishes to 9 900-11 300 for a late 8-week start time. Long-term social distancing at 6 and 8-week durations are viable but less effective. INTERPRETATION: Gradual release exit strategies are critical to maintain epidemic suppression under a new normal. We present final infection attack sizes assuming the ongoing importation of cases, which require preparation for a potential second epidemic wave due to ongoing epidemics elsewhere. FUNDING: Singapore Ministry of Health, Singapore Population Health Improvement Centre.

4.
IJID Reg ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2241862

ABSTRACT

Background: The COVID-19 pandemic has led to a fall of over 70% in international travel, resulting in substantial economic damages. The impact is especially pronounced in the Asia-Pacific region, where governments have been slow to relax border restrictions. Methods: For eight Asia-Pacific countries or regions, we utilized a retrospective approach to construct notional epidemic trajectories from June to November 2021 under hypothetical scenarios of earlier resumption of international travel and selective border-reopening. We calculated number of local infections and deaths over the prediction window accordingly. Results: Had quarantine-free entry been permitted for all travellers from all the regions investigated and travel volumes recovered to the 2019 levels, Australia, New Zealand and Singapore would have been the three most severely affected regions, with at least doubled number of deaths, while infections would have increased marginally (<5%) for Japan, Malaysia and Thailand. Conclusions: Earlier resumption of travel in Asia-Pacific, while maintaining a controlled degree of importation risk, could have been implemented through selective border-reopening strategies and on-arrival testing. Once countries had experienced large, localized COVID-19 outbreaks, earlier relaxation of border containment measures would not have resulted in a great increase in morbidity and mortality.

5.
Ann Med ; 54(1): 3299-3305, 2022 12.
Article in English | MEDLINE | ID: covidwho-2120943

ABSTRACT

BACKGROUND: It is unclear whether unintentional ingestion of povidone-iodine following its application to the oropharyngeal space could affect thyroid function. OBJECTIVE: To examine thyroid function among individuals who regularly apply povidone-iodine throat spray for SARS-CoV-2 prophylaxis. METHODS: We designed a case-control study to compare thyroid function among participants who received povidone-iodine throat spray three times a day for 42 days ('cases') and those who received vitamin C ('controls'). Thyroid function was assessed by profiling serum TSH, free T3, and free T4; iodine status was estimated using serum thyroglobulin level, while infection status was determined by measuring anti-SARS-CoV-2 antibody against the nucleocapsid antigen. All measurements were performed in pairs, at baseline and 42 days later. Pre-post changes in thyroid function were compared between groups, before and after stratification according to baseline TSH quartiles. RESULTS: A total of 177 men (117 cases and 60 controls) (mean age, 32.2 years) were included. Despite comparable demographics and clinical profiles, no clinically or statistically significant differences were observed in thyroid indices between 'cases' and 'controls' before and after stratification according to TSH quartiles. None of the participants developed symptomatic hypo- or hyperthyroidism throughout the study. Post-hoc analysis did not reveal differences in thyroid function according to infection status. CONCLUSIONS: Data from this study support the overall safety of povidone-iodine use in the oropharyngeal space for SARS-CoV-2 prophylaxis among individuals with normal thyroid function and subclinical thyroid disease.


Subject(s)
COVID-19 , Povidone-Iodine , Male , Humans , Adult , Povidone-Iodine/adverse effects , Thyroid Gland , SARS-CoV-2 , Case-Control Studies , Pharynx , COVID-19/prevention & control , Thyrotropin
6.
Health data science ; 2021, 2021.
Article in English | EuropePMC | ID: covidwho-2112021

ABSTRACT

Background Limited evidence on the effectiveness of various types of social distancing measures, from voluntary physical distancing to a community-wide quarantine, exists for the Western Pacific Region (WPR) which has large urban and rural populations. Methods We estimated the time-varying reproduction number (Rt) in a Bayesian framework using district-level mobility data provided by Facebook (i) to assess how various social distancing policies have contributed to the reduction in transmissibility of SARS-COV-2 and (ii) to examine within-country variations in behavioural responses, quantified by reductions in mobility, for urban and rural areas. Results Social distancing measures were largely effective in reducing transmissibility, with Rt estimates decreased to around the threshold of 1. Within-country analysis showed substantial variation in public compliance across regions. Reductions in mobility were significantly lower in rural and remote areas than in urban areas and metropolitan cities (p < 0.001) which had the same scale of social distancing orders in place. Conclusions Our findings provide empirical evidence that public compliance and consequent intervention effectiveness differ between urban and rural areas in the WPR. Further work is required to ascertain the factors affecting these differing behavioural responses, which can assist in policy-making efforts and increase public compliance in rural areas where populations are older and have poorer access to healthcare.

7.
JAMA Netw Open ; 5(8): e2228900, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2013235

ABSTRACT

Importance: Assessing booster effectiveness of COVID-19 mRNA vaccine and inactivated SARS-CoV-2 vaccine over longer time intervals and in response to any further SARS-CoV-2 variants is crucial in determining optimal COVID-19 vaccination strategies. Objective: To determine levels of protection against severe COVID-19 and confirmed SARS-CoV-2 infection by types and combinations of vaccine boosters in Singapore during the Omicron wave. Design, Setting, and Participants: This cohort study included Singapore residents aged 30 years or more vaccinated with either at least 2 doses of mRNA COVID-19 vaccines (ie, Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273) or inactivated SARS-CoV-2 vaccines (Sinovac CoronaVac or Sinopharm BBIBP-CorV) as of March 10, 2022. Individuals with a known SARS-CoV-2 infection prior to December 27, 2021, an infection on or before the date of their second vaccine dose, or with reinfection cases were excluded. Exposures: Two or 3 doses of Pfizer-BioNTech BNT162b2, Moderna mRNA-1273, Sinovac CoronaVac, or Sinopharm BBIBP-CorV. Main Outcomes and Measures: Notified infections from December 27, 2021, to March 10, 2022, adjusted for age, sex, race, housing status, and calendar days. Estimated booster effectiveness, defined as the relative incidence-rate reduction of severe disease (supplemental oxygen, intensive care, or death) or confirmed infection following 3-dose vaccination compared with 5 months after second mRNA dose, was determined using binomial regression. Results: Among 2 441 581 eligible individuals (1 279 047 [52.4%] women, 846 110 (34.7%) aged 60 years and older), there were 319 943 (13.1%) confirmed SARS-CoV-2 infections, of which 1513 (0.4%) were severe COVID-19 cases. mRNA booster effectiveness against confirmed infection 15 to 60 days after boosting was estimated to range from 31.7% to 41.3% for the 4 boosting combinations (homologous BNT162b2, homologous mRNA-1273, 2-dose BNT162b2/mRNA-1273 booster, and 2-dose mRNA-1273/BNT162b2 booster). Five months and more after boosting, estimated booster effectiveness against confirmed infection waned, ranging from -2.8% to 14.6%. Against severe COVID-19, estimated mRNA booster effectiveness was 87.4% (95% CI, 83.3%-90.5%) 15 to 60 days after boosting and 87.2% (95% CI, 84.2%-89.7%) 5 to 6 months after boosting, with no significant difference comparing vaccine combinations. Booster effectiveness against severe COVID-19 15 days to 330 days after 3-dose inactivated COVID-19 vaccination, regardless of combination, was estimated to be 69.6% (95% CI, 48.7%-81.9%). Conclusions and Relevance: Booster mRNA vaccine protection against severe COVID-19 was estimated to be durable over 6 months. Three-dose inactivated SARS-CoV-2 vaccination provided greater protection than 2-dose but weaker protection compared with 3-dose mRNA.


Subject(s)
COVID-19 , Viral Vaccines , Aged , BNT162 Vaccine , COVID-19 Vaccines , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged , RNA, Messenger , SARS-CoV-2 , Singapore , Vaccines, Synthetic , mRNA Vaccines
9.
Epidemics ; 40: 100617, 2022 09.
Article in English | MEDLINE | ID: covidwho-1956143

ABSTRACT

INTRODUCTION: Large, localised outbreaks of COVID-19 have been repeatedly reported in high-density residential institutions. Understanding the transmission dynamics will inform outbreak response and the design of living environments that are more resilient to future outbreaks. METHODS: We developed an individual-based, multilevel transmission dynamics model using case, serology and symptom data from a 60-day cluster randomised trial of prophylaxes in a densely populated foreign worker dormitory in Singapore. Using Bayesian data augmentation, we estimated the basic reproduction number and the contribution that within-room, between-level and across-block transmission made to it, and the prevalence of infection over the study period across different spatial levels. We then simulated the impact of changing the building layouts in terms of floors and blocks on outbreak size. RESULTS: We found that the basic reproduction number was 2.76 averaged over the different putative prophylaxes, with substantial contributions due to transmission beyond the residents' rooms. By the end of ~60 days of follow up, prevalence was 64.4 % (95 % credible interval 64.2-64.6 %). Future outbreak sizes could feasibly be halved by reducing the density to include additional housing blocks, or taller buildings, while retaining the overall number of men in the complex. DISCUSSION: The methods discussed can potentially be utilised to estimate transmission dynamics at any high-density accommodation site with the availability of case and serology data. The restructuring of infrastructure to reduce the number of residents per room can dramatically slow down epidemics, and therefore should be considered by policymakers as a long-term intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Humans , Male
10.
N Engl J Med ; 387(6): 525-532, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-1947717

ABSTRACT

BACKGROUND: Since it was first identified in early November 2021, the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread quickly and replaced the B.1.617.2 (delta) variant as the dominant variant in many countries. Data on the real-world effectiveness of vaccines against the omicron variant in children are lacking. METHODS: In a study conducted from January 21, 2022, through April 8, 2022, when the omicron variant was spreading rapidly, we analyzed data on children in Singapore who were 5 to 11 years of age. We assessed the incidences of all reported SARS-CoV-2 infections (confirmed on polymerase-chain-reaction [PCR] assay, rapid antigen testing, or both), SARS-CoV-2 infections confirmed on PCR assay, and coronavirus disease 2019 (Covid-19)-related hospitalizations among unvaccinated, partially vaccinated (≥1 day after the first dose of vaccine and up to 6 days after the second dose), and fully vaccinated children (≥7 days after the second dose). Poisson regression was used to estimate vaccine effectiveness from the incidence rate ratio of outcomes. RESULTS: A total of 255,936 children were included in the analysis. Among unvaccinated children, the crude incidence rates of all reported SARS-CoV-2 infections, PCR-confirmed SARS-CoV-2 infections, and Covid-19-related hospitalizations were 3303.5, 473.8, and 30.0 per 1 million person-days, respectively. Among partially vaccinated children, vaccine effectiveness was 13.6% (95% confidence interval [CI], 11.7 to 15.5) against all SARS-CoV-2 infections, 24.3% (95% CI, 19.5 to 28.9) against PCR-confirmed SARS-CoV-2 infection, and 42.3% (95% CI, 24.9 to 55.7) against Covid-19-related hospitalization; in fully vaccinated children, vaccine effectiveness was 36.8% (95% CI, 35.3 to 38.2), 65.3% (95% CI, 62.0 to 68.3), and 82.7% (95% CI, 74.8 to 88.2), respectively. CONCLUSIONS: During a period when the omicron variant was predominant, BNT162b2 vaccination reduced the risks of SARS-CoV-2 infection and Covid-19-related hospitalization among children 5 to 11 years of age.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , BNT162 Vaccine/pharmacology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Hospitalization/statistics & numerical data , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Singapore/epidemiology , Vaccine Efficacy/statistics & numerical data , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
11.
Viruses ; 14(7)2022 07 20.
Article in English | MEDLINE | ID: covidwho-1939029

ABSTRACT

The time-varying reproduction (Rt) provides a real-time estimate of pathogen transmissibility and may be influenced by exogenous factors such as mobility and mitigation measures which are not directly related to epidemiology parameters and observations. Meanwhile, evaluating the impacts of these factors is vital for policy makers to propose and adjust containment strategies. Here, we developed a Bayesian regression framework, EpiRegress, to provide Rt estimates and assess impacts of diverse factors on virus transmission, utilising daily case counts, mobility, and policy data. To demonstrate the method's utility, we used simulations as well as data in four regions from the Western Pacific with periods of low COVID-19 incidence, namely: New South Wales, Australia; New Zealand; Singapore; and Taiwan, China. We found that imported cases had a limited contribution on the overall epidemic dynamics but may degrade the quality of the Rt estimate if not explicitly accounted for. We additionally demonstrated EpiRegress's capability in nowcasting disease transmissibility before contemporaneous cases diagnosis. The approach was proved flexible enough to respond to periods of atypical local transmission during epidemic lulls and to periods of mass community transmission. Furthermore, in epidemics where travel restrictions are present, it is able to distinguish the influence of imported cases.


Subject(s)
COVID-19 , Basic Reproduction Number , Bayes Theorem , COVID-19/epidemiology , China/epidemiology , Humans , Travel
12.
Clin Infect Dis ; 75(1): e35-e43, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886379

ABSTRACT

BACKGROUND: In Singapore, quarantine of all close contacts with entry and exit polymerase chain reaction testing enabled evaluation of the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and pediatric age on transmission of the Delta variant. METHODS: This retrospective cohort study included all household close contacts between 1 March 2021 and 31 August 2021. RESULTS: Among 8470 Delta variant-exposed contacts linked to 2583 indices, full-vaccination of the index with BNT162b2 or mRNA-1273 was associated with reduction in acquisition by contacts (adjusted odds ratio [aOR], 0.56; 95% robust confidence interval [RCI], .44-.71 and aOR, 0.51; 95% RCI, .27-.96, respectively). Compared with young adults (aged 18-29 years), children (aged 0-11 years) were significantly more likely to transmit (aOR, 2.37; 95% RCI, 1.57-3.60) and acquire (aOR, 1.43; 95% RCI, 1.07-1.93) infection, vaccination considered. Longer duration from vaccination completion among contacts was associated with decline in protection against acquisition (first-month aOR, 0.42; 95% RCI, .33-.55; fifth-month aOR, 0.84; 95% RCI, .55-.98; P < .0001 for trend) and symptomatic disease (first-month aOR, 0.30; 95% RCI, .23-.41; fifth-month aOR, 0.62; 95% RCI, .38-1.02; P < .0001 for trend). Contacts immunized with mRNA-1273 had significant reduction in acquisition (aOR, 0.73; 95% RCI, .58-.91) compared with BNT162b2. CONCLUSIONS: Among household close contacts, vaccination prevented onward SARS-CoV-2 transmission and there was in-creased risk of SARS-CoV-2 acquisition and transmission among children compared with young adults. Time after completion of vaccination and vaccine type affected SARS-CoV-2 acquisition.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Retrospective Studies , SARS-CoV-2/genetics , Vaccination , Young Adult
13.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: covidwho-1820423

ABSTRACT

As countries transition from pandemic mitigation to endemic COVID-19, mass testing may blunt the impact on the healthcare system of the liminal wave. We used GeoDEMOS-R, an agent-based model of Singapore's population with demographic distributions and vaccination status. A 250-day COVID-19 Delta variant model was run at varying maximal rapid antigen test sensitivities and frequencies. Without testing, the number of infections reached 1,021,000 (899,400-1,147,000) at 250 days. When conducting fortnightly and weekly mass routine rapid antigen testing 30 days into the outbreak at a maximal test sensitivity of 0.6, this was reduced by 12.8% (11.3-14.5%) and 25.2% (22.5-28.5%). An increase in maximal test sensitivity of 0.2 results a corresponding reduction of 17.5% (15.5-20.2%) and 34.4% (30.5-39.1%). Within the maximal test sensitivity range of 0.6-0.8, test frequency has a greater impact than maximal test sensitivity with an average reduction of 2.2% in infections for each day removed between tests in comparison to a 0.43% average reduction per 1% increase in test frequency. Our findings highlight that mass testing using rapid diagnostic tests can be used as an effective intervention for countries transitioning from pandemic mitigation to endemic COVID-19.


Subject(s)
COVID-19 , Pandemics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks , Humans , Pandemics/prevention & control , SARS-CoV-2
17.
J Migr Health ; 5: 100079, 2022.
Article in English | MEDLINE | ID: covidwho-1654788

ABSTRACT

INTRODUCTION: COVID-19 transmission within overcrowded migrant worker dormitories is an ongoing global issue. Many countries have implemented extensive control measures to prevent the entire migrant worker population from becoming infected. Here, we explore case count outcomes when utilizing lockdown and testing under different testing measures and transmissibility settings. METHODS: We built a mathematical model which estimates transmission across 10 different blocks with 1000 individuals per block under different parameter combinations and testing conditions over the period of 1 month. We vary parameters including differences in block connectivity, underlying recovered proportions at the time of intervention, case importation rates and testing protocols using either PCR or rapid antigen testing. RESULTS: We estimate that a relatively transmissible environment with fortnightly PCR testing at a relatively low initial recovered proportion of 40%, low connectivity where 10% of contacts occurred outside of the infected individuals' block and a high importation rate of 1 100 000 per day, results in an average of 39 (95%Interval: 9-121) new COVID-19 cases after one month of observation. Similar results were observed for weekly rapid antigen testing at 33 (9-95) cases. INTERPRETATION: Our findings support the need for either fortnightly PCR testing or weekly rapid antigen testing in high population density environments such as migrant worker dormitories. Repeated mass testing is highly effective, preventing localized site outbreaks and reducing the need for site wide lockdowns or other extensive social distancing measures within and outside of dormitories.

18.
Int J Infect Dis ; 116: 365-373, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1641323

ABSTRACT

OBJECTIVES: Super-spreading events caused by overdispersed secondary transmission are crucial in the transmission of COVID-19. However, the exact level of overdispersion, demographics, and other factors associated with secondary transmission remain elusive. In this study, we aimed to elucidate the frequency and patterns of secondary transmission of SARS-CoV-2 in Japan. METHODS: We analyzed 16,471 cases between January 2020 and August 2020. We generated the number of secondary cases distribution and estimated the dispersion parameter (k) by fitting the negative binomial distribution in each phase. The frequencies of the secondary transmission were compared by demographic and clinical characteristics, calculating the odds ratio using logistic regression models. RESULTS: We observed that 76.7% of the primary cases did not generate secondary cases with an estimated dispersion parameter k of 0.23. The demographic patterns of primary-secondary cases differed between phases, with 20-69 years being the predominant age group. There were higher proportions of secondary transmissions among older individuals, symptomatic patients, and patients with 2 days or more between onset and confirmation. CONCLUSIONS: The study showed the estimation of the frequency of secondary transmission of SARS-CoV-2 and the characteristics of people who generated the secondary transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Demography , Humans , Japan/epidemiology
19.
Emerg Microbes Infect ; 10(1): 2141-2150, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532382

ABSTRACT

BACKGROUND: We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS: In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS: All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION: Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Cross-Sectional Studies , Humans , Male , Nucleocapsid Proteins/immunology
20.
Lancet Reg Health West Pac ; 17: 100299, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1506512

ABSTRACT

BACKGROUND: Impact of the Delta variant and vaccination on SARS-CoV-2 transmission remains unclear. In Singapore, quarantine of all close contacts, including entry and exit PCR testing, provided the opportunity to determine risk of infection by the Delta variant compared to other variants, vaccine efficacy against SARS-CoV-2 acquisition, symptomatic or severe COVID-19, and risk factors associated with SARS-CoV-2 acquisition and symptomatic disease. METHODS: This retrospective cohort study included all close contacts between September 1, 2020 and May 31, 2021. Regardless of symptoms, all were quarantined for 14 days with entry and exit PCR testing. Household contacts were defined as individuals who shared a residence with a Covid-19 index case. Secondary attack rates among household close contacts of Delta variant-infected indexes and other variant-infected indexes were derived from prevalence of diagnosed cases among contacts. Relative risk ratios and bootstrapping at the cluster level was used to determine risk of infection by the Delta variant compared to other variants and vaccine efficacy against SARS-CoV-2 acquisition, symptomatic or severe COVID-19. Logistic regression using generalized estimating equations was used to determine risk factors associated with SARS-CoV-2 acquisition and symptomatic disease. FINDINGS: Of 1024 household contacts linked to 301 PCR-confirmed index cases, 753 (73.5%) were linked to Delta-infected indexes and 248 (24.2%) were exposed to indexes with other variants. Household secondary attack rate among unvaccinated Delta-exposed contacts was 25.8% (95% boostrap confidence interval [BCI] 20.6-31.5%) compared with 12.9% (95%BCI 7.0-20.0%) among other variant-exposed contacts. Unvaccinated Delta-exposed contacts were more likely to be infected than those exposed to other variants (Relative risk 2.01, 95%CI 1.24-3.84). Among Delta-exposed contacts, complete vaccination had a vaccine effectiveness of 56.4% (95%BCI 32.6-75.8%) against acquisition, 64.1% (95%BCI 37.8-85.4%) against symptomatic disease and 100% against severe disease. Among Delta-exposed contacts, vaccination status (adjusted odds ratio [aOR] 0.33, 95% robust confidence interval [RCI] 0.17-0.63) and older age of the index (aOR 1.20 per decade, 95%RCI 1.03-1.39) was associated with increased risk of SARS-CoV-2 acquisition by the contact. Vaccination status of the index was not associated with a statistically-significant difference for contact SARS-CoV-2 acquisition (aOR 0.73, 95%RCI 0.38-1.40). INTERPRETATION: Increased risk of SARS-CoV-2 Delta acquisition compared with other variants was reduced with vaccination. Close-contacts of vaccinated Delta-infected indexes did not have statistically significant reduced risk of acquisition compared with unvaccinated Delta-infected indexes.

SELECTION OF CITATIONS
SEARCH DETAIL